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Advances in communication, navigation, and computational systems have enabled greater
autonomy in multivehicle systems. However, time-delay effects owing to measurement, actu-
ation, communication, or operator delays are introduced as system complexity increases.
In this paper, a straightforward method is presented to determine the maximum allow-
able time delays for a linear, n-dimensional system. Delay differential equations are one
method to model systems with delay, and the theory presented here is based upon well-
known stability results for a scalar, first-order delay differential equation. Modal-coordinate
transformations are used to diagonalize, and thus, decouple closed-loop equations of motion
to which the scalar, first-order delay-differential-equation results are applied in order to
find optimal bounds on the time delay. Hence, stability bounds for a given closed-loop con-
trol form can be determined by solving an eigenvalue problem, which is a departure from
other delay-differential-equation results that require solutions to linear matrix inequalities
or a problem-specific Lyapunov function to prove stability. This theoretical development is
applied to a formation-control problem with five vehicles. Control laws are developed for the
vehicle formation using two different communication structures: leader–follower and bidi-
rectional. Simulation results are used to demonstrate formation convergence, and robustness
of the formations to time-delay effects are discussed.

I. Introduction

THE design and implementation of decentralized, cooperative controllers for multivehicle systems will enable
greater autonomy and task efficiency for a wide range of engineering applications. Decentralized systems have

distributed control authority between individual entities rather than a single central authority that calculates control
inputs for all entities. In a cooperative control scheme, individual vehicles share state and environmental information
with other vehicles in order to determine the control inputs that will achieve a common objective. Applications of
these control concepts include the development of automated highway systems [1–4], next-generation air traffic
management systems [5–8], and unmanned aerial vehicle (UAV) systems [9–12]. Whereas decentralized systems are
more robust to communication failures and structural reconfigurations[13], the impact of intervehicle communication
delays on system stability and performance must also be considered.

Stability analysis of systems with delay is an important aspect to the design and control of decentralized sys-
tems. In particular, complex systems are subject to measurement, actuation, communication, and human-operator
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delays, and in many cases it is necessary to take these delays into account when designing control laws. Olfati-Saber
and Murray investigated control laws with time-delayed feedback for dynamic agents using graph theory[14], and
Subbarao and Muralidhar have approached the communication-delay problem for UAVs by designing a nonlinear
multi-input/multi-output (MIMO) state observer with output delays[15]. Much of the literature on multivehicle con-
trol does not directly address time-delay effects in feedback delays; for example, Dionne and Rabbath have included
communication delays in simulations, but these delay effects were not incorporated into the control design[16].

This research considers an approach to quantify stable time delays in the feedback states of decentralized, coop-
erative control laws. The research objective was to evaluate the maximum allowable delay for stability using delay
differential equations (DDEs) to model the n-dimensional closed-loop systems with delayed feedback. A common
coordinate transformation, which is used to design feedback controllers for structural systems, was combined with
well-known stability results for scalar, first-order DDEs to determine delay properties for a first-order, linear sys-
tem of equations. The major contribution of the paper is the straightforward method to approximate the maximum
allowable delay for an n-dimensional system, and we have specifically aimed to quantify the stability bounds without
solving the DDE.

The remainder of the paper is organized as follows. Background on DDEs is presented in Sec. II. Section III
presents the stability analysis for a first-order, scalar DDE, and the results presented in that section enable the
subsequent investigation of delay properties for n-dimensional, linear systems. Section IV describes the method of
determining the maximum allowable delay for an n-dimensional system of equations by using a modal-coordinate
transformation to diagonalize the 2n first-order, closed-loop equations of motion. This approach enables the use of
some of the well-known DDE results in the literature. The application of the developed theory to a formation control
problem is described in Sec. V, where two different control laws based upon defined communication structures are
presented. Simulation results demonstrating the theory are also presented, followed by conclusions in Sec. VI.

II. Delay Differential Equations
Delay differential equations model systems with delay, and the literature over the past several decades has focused

on analyzing the stability of this specific type of differential equation. Driver describes a DDE as a “differential
equation with a retarded argument”, that is, a DDE expresses some derivative of x, x(n), at time t as a function of
(x, ẋ, . . . , x(n−1)) evaluated at time t and earlier instants[17].

There are two stability concepts in the analysis of DDEs: delay-independent and delay-dependent stability.
Whereas delay-independent stability holds for all positive, finite delays, delay-dependent stability only holds for
some values of the delays and instabilities occur when the delays are outside of the stability bounds [18–20]. In the
case of linear, time-invariant DDEs, delay-independent stability criteria can be determined quite simply; however,
determining bounds on delays becomes more challenging owing to the need to solve a transcendental equation, which
has an infinite number of solutions.

Frequency-domain methods are one approach described in the literature to analyze stability of DDEs. In the case
of linear, autonomous DDEs, the roots of the transcendental characteristic function are difficult to determine, which
led researchers to explore other means of analyzing the stability of DDEs. Analytical methods using Pontryagin’s
theorem (for a single delay or a commensurable number of delays) are used to determine the number of zeros in the
right-half plane, and the method of D subdivision can be applied to find the regions where the characteristic function
has roots in the right-half plane as a function of the system parameters [18,21]. Mori et al. examined asymptotic
stability of linear DDEs of the form ẋ(t) = Ax(t) + Bx(t − τ), and results in the form of linear matrix inequalities
(LMIs) provide both delay-independent and delay-dependent criteria [19,20]. Niculescu investigated necessary and
sufficient conditions for delay-independent and delay-dependent stability using a matrix-pencil technique[22].

Time-domain methods can also be used to show delay-independent or delay-dependent stability using an extension
of Lyapunov’s second method for time-delay systems [17,18]. Driver describes the Lyapunov–Krasovskiĭ method
as seeking to find a Lyapunov functional that includes information regarding the delay size, and then Lyapunov’s
second method can be carried through to determine stability. Dugard and Verriest show that asymptotic stability can
be shown using a Lyapunov–Krasovskiĭ functional that leads to the delay Riccati equation[18]. Chopra and Spong
have demonstrated delay-independent stability for networked passive systems with delays on the transmitted system
outputs [23,24].
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Additionally, some numerical methods have been developed recently to find stability regions in the time-delay
parameter space. Kalmàr-Nagy presents a method to estimate the delay-dependent stability chart using a polynomial
approximation of the transcendental characteristic equation[25]. Sipahi and Olgac have developed a method to find
stability regions for multiple time-delay systems using a root-clustering technique, which finds the delay regions
where the roots of the transcendental characteristic equation cross the imaginary axis into the right-half plane [26–28].
The work of Asl and Ulsoy [29,30] and Yi and Ulsoy[31] and the references therein are especially important to the
work presented in this paper. Their focus is on a Lambert-function technique that is used to approximate the solution
of a system of linear DDEs.

In all of the aforementioned methods, there are challenges in determining the delay-dependent bounds for large-
dimensional systems with delays, such as solving LMIs, finding an appropriate Lyapunov–Krasovskiĭ function, or
requiring extensive, problem-specific computation. The stability results for a scalar, first-order system with delay are
well known, and this simplified model is exploited in this paper to determine approximate delay-dependent stability
bounds for a multidimensional, linear system of equations subject to delays in the feedback control.

III. Stability Results for a Scalar, First-Order DDE
In this section we present some known results for a scalar, first-order DDE. Consider the DDE given below

ẋ(t) = ax(t) + bx(t − τ) (1)

Here, τ is a constant delay. In the parameter space, S(0) is the set (a, b) where Eq. (1) is asymptotically stable for
τ = 0[18]. Thus, S(0) is easily determined

S(0) = {(a, b) : a + b < 0} (2)

Assume that a < 0, and using a Lyapunov–Krasovskiĭ approach, the conditions on b can be found such that (a, b)

corresponds to the delay-independent set S∞. A Lyapunov functional is defined as shown below

V (t) = x2(t) + |a|
∫ t

t−τ

x2(s) ds (3)

A time-derivative of V (t) reveals the condition for b

V̇ (t) = 2x(t) [ax(t) + bx(t − τ)] + |a| [x2(t) − x2(t − τ)
]

= −|a|x2(t) − |a|x2(t − τ) + 2bx(t)x(t − τ)

� (−|a| + |b|) [
x2(t) + x2(t − τ)

]
(4)

Therefore, delay-independent stability is achieved for a � −|b|
S∞ = {(a, b) : a + b < 0, a � −|b|} (5)

The delay-dependent set is complementary to S∞ within S(0)[18].

Sτ = {(a, b) : a + b < 0, b < −|a|} (6)

To find the stability bound in the delay-dependent region for a delay τ , the transcendental characteristic equation
from Eq. (1) is formed

s − a − be−sτ = 0 (7)

By substituting s = jω and expanding using Euler’s identity, the real and imaginary parts of the characteristic
equation can be written as shown

−a − b cos(ωτ) = 0; ω + b sin(ωτ) = 0 (8)

Hale[32] and Smith[33] show that the stable region, where the roots of the transcendental equation in Eq. (7) have
Re(s) < 0, is the open region bounded by the curves b = −a and the solution to Eq. (8) for 0 < ω < π/τ . Figure 1
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Fig. 1 Delay-independent and dependent stability regions for ẋ(t) = ax(t) + bx(t − τ).

shows the delay-independent and delay-dependent stability regions for Eq. (1) in the (a(ω), b(ω)) space for the
range 0 < ω < π/τ and with τ = 0.1 and τ = 1.0. The asymptotically stable regions are the cross-hatched areas,
and the unstable regions in S(0) are dotted. From the above results, the stability bound on τ can be determined for
any parameter set (a, b) in the delay-dependent region

τ ∗ = cos−1 (−a/b)√
b2 − a2

(9)

IV. Time-Delay Analysis
The objective is to determine the maximum system delay for n-dimensional, linear equations of motion. Assume

that the second-order closed-loop equations for a coupled system can be written in a structural form: M z̈(t) + Cż(t) +
Kz(t) = 0, where M , C, and K are n × n mass, damping, and stiffness matrices, respectively[34]. A first-order form
can be derived for Z(t) = [z(t) ż(t)]T

Ż(t) =
⎡
⎣ 0n×n In×n

−M−1K −M−1C

⎤
⎦ Z(t) = AclZ(t) (10)

This paper specifically examines closed-loop systems that have the linear, first-order form in Eq. (10). Here Acl is an
2n × 2n matrix and Z(t) is an 2n × 1 vector of generalized coordinates and their rates. Suppose that Z(t) is subject
to some delay, τ , owing to some measurement, actuation, communication, or operator delay on the feedback states.
It is assumed that this delay also acts on the kinematics to simplify the first-order, closed-loop form to the expression
shown below

Ż(t) = AclZ(t − τ) (11)

If Acl is a diagonalizable matrix, a modal transformation of the following form can be chosen[34].

z(t) = �η(t); z(·) = �η(·) (12)

Here, � is an 2n × 2n matrix of the eigenvectors of Acl. Substituting Eq. (12) into the closed-loop form in Eq. (11)
and multiplying by �−1 yields the following 2n first-order differential equations with delay

η̇(t) = Adη(t − τ) (13)

324



WEITZ AND HURTADO

The matrix Ad = �−1Acl� is diagonal; therefore, the modal transformation decouples the matrix DDE in the η

coordinates

η̇1(t) = λ1η1(t − τ1)

η̇2(t) = λ2η2(t − τ2)

...

η̇2n(t) = λ2nη2n(t − τ2n) (14)

The coefficients λi in the above equations are the eigenvalues of the closed-loop matrix, Acl. Therefore, the coefficients
can be real or complex. A stable closed-loop matrix will have eigenvalues with negative real parts.

For the case where the coefficients are real, the delay-independent and delay-dependent stability of the closed-
loop system can be analyzed using the results presented in Sec. II for each scalar first-order DDE in Eq. (14). In the
modal form above, the coefficient a in Eq. (1) is zero, which implies that the system is delay-independently stable
for b = λi = 0 only. From the delay-dependent results for the optimal bound on the delay, the following relationship
for each first-order DDE is derived

τ ∗
i = π

2|λi | (15)

In the case that the coefficients are complex, the transcendental equation in Eq. (7) can be rewritten with a = 0
and b complex.

s − (bR + jbI ) e−sτ = 0 (16)

Here, bR and bI are the real and imaginary parts of b, respectively. The optimal bound on τ can be derived by
substituting s = jω into Eq. (16) and expanding using Euler’s identity.

τ ∗
i = tan−1 (−bR/bI )√

b2
R + b2

I

(17)

This equation is a general expression for the DDE with a = 0 and b either real or complex. If bI = 0, this expression
is equivalent to that shown in Eq. (15).

The optimal bounds for each DDE in Eq. (14) can be computed using the general form in Eq. (17), and the smallest
τ ∗
i is the maximum allowable delay for the closed-loop system. At the maximum allowable delay, the system displays

marginally stable behavior; for delays less than the maximum delay, the DDEs are asymptotically stable; and if the
maximum delay is exceeded, the system will be unstable. Thus, delay bounds can be determined for a general
closed-loop control form by solving an eigenvalue problem to diagonalize the closed-loop matrix. Stability bounds
can be found without solving or approximating the solution of the DDE, which is contrasted with work by Asl and
Ulsoy [29,30], and Yi and Ulsoy [31].

V. Application to Formation Control
The development in Sec. IV was used to determine the maximum allowable system delay for a coupled,

n-dimensional system. In this section, the theory is applied to the formation control of a five-vehicle system. First, the
formation-control problem and the vehicle model are presented. Based upon the form and properties of the vehicle
model, expressions are derived for the error dynamics that govern the spacing between vehicles in the formation.
Two control forms are explored based upon the decentralized communication structure between adjacent vehicles in
the formation. The first control form uses a leader–follower communication structure, where each vehicle receives
information from its preceding vehicle. The second form uses a bidirectional communication structure in which each
vehicle receives state information from both its preceding and trailing vehicles.
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Fig. 2 Examples of communication structures in decentralized multi-vehicle formation control[9]. a) and b) show
leader–follower and bidirectional communication structures, respectively.

A. Problem Definition
The decentralized formation-control problem for a five-vehicle system is shown in Fig. 2. Each vehicle pair is

denoted by the dashed lines, and communication flow is shown by the arrows between vehicles. Figure 2a shows the
leader–follower communication structure. This structure can be explored by considering the second vehicle V2; V2

receives state information from its lead V1, and V3 receives information from V2. The first vehicle, V1, will be referred
to as the formation lead, which tracks a reference trajectory denoted here as an imaginary reference vehicle Vr . Figure
2b shows the bidirectional communication structure. In this communication structure, the formation lead receives
information from the reference trajectory and both trailing vehicles, V2 and V4, and V2 receives information from
both V1 and V3.

B. Vehicle Model and Error Dynamics
The chosen vehicle model is a commonly used nonlinear kinematics model that represents a vehicle with zero or

negligible velocity in the direction perpendicular to the vehicle’s heading

ẋ = v cos ψ

ẏ = v sin ψ (18)

ψ̇ = ω

Here, x and y are the vehicle’s inertial position in the two-dimensional (2-D) plane, v is the velocity in the direction
of motion, ψ is the heading angle relative to the x axis, and ω is the angular turn rate of the vehicle. The velocity
and angular turn rate are assumed to be the control inputs to the vehicle.

The vehicle model is differentially flat with flat outputs x and y[35]. Owing to the differential-flatness property,
the state ψ and the two control inputs can be written as functions of the flat outputs and their derivatives as shown
below

v =
√

ẋ2 + ẏ2

ψ = tan−1

(
ẏ

ẋ

)
(19)

ω = ÿẋ − ẏẍ

v2

The second derivatives of the flat outputs are the highest derivatives that appear in the controls, v and ω. Therefore,
new control inputs were defined as (ẍ, ÿ) = (u, w). This transformation enables the nonlinear system in Eq. (18) to
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be represented as uncoupled double integrators.⎡
⎢⎢⎣

ẋ

ẏ

ẍ

ÿ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

ẋ

ẏ

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦

[
u

w

]
(20)

Thus, the control-law design is made easier by the transformation to the linear representation, which provides an
exact linear model rather than a linear approximation [11,35].

The design focus is on the internal stability of the formation, that is, the ability to achieve and maintain a desired
formation. Error variables are defined between the vehicle pairs as shown below. Note that the defined errors are in
the x direction only. Owing to the uncoupled nature of the equations of motion, the development is identical in the
y direction

e1 = xr − x1 − d1; ė1 = ẋr − ẋ1; ë1 = ẍr − ẍ1 = ẍr − u1 (21)

ei = x1 − xi − di; ėi = ẋ1 − ẋi; ëi = ẍ1 − ẍi = u1 − ui; i = 2, 4 (22)

ei = xi−1 − xi − di; ėi = ẋi−1 − ẋi; ëi = ẍi−1 − ẍi = ui−1 − ui; i = 3, 5 (23)

In Eq. (21), the formation lead tracks a desired reference trajectory, xr , at some constant distance, d1. Equation (22)
is the relative error between vehicles 1 and 2 and vehicles 1 and 4 separated by some desired distance, and Eq. (23)
follows similarly for vehicles 3 and 5.

C. Control-Law Development
1. Leader–Follower Communication Structure

For the leader–follower communication structure, a form for the control input to the ith vehicle ui is assumed as
shown below. Initially, the control input did not include delay in the measured or communicated state information.
Note that the control laws for vehicles 1, 2, and 3 are designed independently of the control laws for vehicles 1, 4,
and 5 owing to the nature of the leader–follower communication structure

ui = kiei + ci ėi + ẍr (24)

The closed-loop error dynamics have the following form for vehicles 1, 2, and 3⎡
⎢⎢⎢⎢⎢⎢⎣

ė1

ė2

ė3

ë1

ë2

ë3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−k1 0 0 −c1 0 0
k1 −k2 0 c1 −c2 0
0 k2 −k3 0 c2 −c3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

ė1

ė2

ė3

⎤
⎥⎥⎥⎥⎥⎥⎦

(25)

From the closed-loop equations, the characteristic equation and the eigenvalues are easily determined

3∏
i=1

[
s2 + cis + ki

] = 0 ⇒ λi1,2 = −ci

2
±

√
c2
i − 4ki

2
(26)

If the closed-loop eigenvalues have negative real parts, the multivehicle system is asymptotically stable. The closed-
loop eigenvalues are found similarly for the platoon of vehicles 1, 4, and 5. Therefore, control gains in Eq. (24) can
be selected to yield stable formation convergence.

To find the maximum allowable delay in this closed-loop system, it is assumed that the error terms in the control
input have a constant delay τ

ui = kiei(t − τ) + ci ėi(t − τ) + ẍr (27)

The error dynamics can be written using the control input form with delay, where Acl is equal to the matrix in Eq. (25).
Following with the development in Sec. IV, it is assumed that the delay also acts on the kinematics in order to write
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the closed-loop form below

ė(t) = Acle(t − τ) (28)

If Acl is diagonalizable, the modal transformation described in Sec. IV can be applied to find six scalar, first-order
DDEs from which the optimal bound on the delay can be determined for each equation. Thus, the maximum allowable
delay for the system can be determined. However, for this closed-loop form, Acl is diagonalizable only if there are six
distinct eigenvalues, which cannot be achieved if all of the control gains in Eq. (24) are equal. The “diagonalizability”
of the closed-loop matrix can be described by the condition number of the � matrix. Large condition numbers indicate
that a diagonal form of Acl cannot be found as � is not invertible. The next section describes a communication structure
where equal control gains are not problematic in the diagonalizability of Acl.

2. Bidirectional Communication Structure
In the bidirectional communication structure, control laws for vehicles 1, 2, and 3 cannot be designed independently

of control laws for vehicles 1, 4, and 5. From Fig. 2(b), it can be seen that the first vehicle is affected by both the
second and fourth vehicles, which couples the two vehicle platoons. Control inputs of the form shown below are
assumed

u1 = k (e1 − e2 − e4) + c (ė1 − ė2 − ė4) + ẍr

ui = k (ei − ei+1) + c (ėi − ėi+1) + ẍr; i = 2, 4 (29)

ui = k (ei) + c (ėi) + ẍr; i = 3, 5

The control inputs result in motion similar to physically placing springs and dampers between the vehicles in the x and
y directions; therefore, the bidirectional communication structure is structurally analogous to a mass-spring-damper
system linked as shown in Fig. 2(b). Again, the closed-loop error dynamics can be written to evaluate stability. The
error vector and closed-loop matrix, Acl, are defined below for this control form.

e = [
e1 e2 e3 e4 e5 ė1 ė2 ė3 ė4 ė5

]T
(30)

Acl =
[

05×5 I5×5

−K −C

]
(31)

K =

⎡
⎢⎢⎢⎢⎣

k −k 0 −k 0
−k 2k −k k 0
0 −k 2k 0 0

−k k 0 2k −k

0 0 0 −k 2k

⎤
⎥⎥⎥⎥⎦ ; C =

⎡
⎢⎢⎢⎢⎣

c −c 0 −c 0
−c 2c −c c 0
0 −c 2c 0 0

−c c 0 2c −c

0 0 0 −c 2c

⎤
⎥⎥⎥⎥⎦ (32)

Whereas the eigenvalues for this system do not have a concise analytical form as those in Eq. (26), the closed-loop
system will be stable for positive definite stiffness and damping matrices.

As in the development of the delayed leader–follower control law, a constant delay, τ , is assumed in the feedback
control laws

u1 = k [e1(t − τ) − e2(t − τ) − e4(t − τ)] + c [ė1(t − τ) − ė2(t − τ) − ė4(t − τ)] + ẍr

ui = k
[
ei(t − τ) − ei+1(t − τ)

] + c
[
ėi (t − τ) − ėi+1(t − τ)

] + ẍr; i = 2, 4 (33)

ui = k [ei(t − τ)] + c [ėi (t − τ)] + ẍr; i = 3, 5

Again, assuming delays in the kinematics, the closed-loop error dynamics can be written in the form
ė(t) = Acle(t − τ). Because the stiffness and damping matrices are symmetric, Acl is diagonalizable for equal gains
in the control inputs to the individual vehicles[34].
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D. Simulation Results
Simulation results are presented below to illustrate the application of the theories in Secs. IV and V to a five-

vehicle, formation-control problem governed by the two control-law forms described above. Numerical results were
simulated using a fourth-order Runge–Kutta solver with initial conditions held constant until the determined optimal
bound, τ . For example, the governing equations of motion in the x direction can be described as shown below, where
x = [x1 x2 x3 x4 x5]T

ẍi (t) = ui (t, xi (t − τ), ẋi (t − τ)) ; xi (t) = xi (0), ẋi (t) = ẋi (0), −τ � t � 0 (34)

Whereas delays in the kinematics are assumed in the derivation of the maximum allowable delay, the simulations
assume zero delay in the kinematic equations.

Four sets of simulation results are presented:
1) Leader–follower control law with nominal gains c = 6 and k = 16. As described previously, the closed-loop

equations are not diagonalizable if the gains are not distinct. In this case, the gains for the vehicles are: c1 = 6
and k1 = 16, c2 = c4 = 7 and k2 = k4 = 16, and c3 = c5 = 5 and k3 = k5 = 16. For these gains and control
structure, the closed-loop matrix, Acl has complex eigenvalues.

2) Leader–follower control law with nominal gains c = 16 and k = 6. Again, in this case the gains cannot be
distinct. The vehicle gains are: c1 = 16 and k1 = 6, c2 = c4 = 17 and k2 = k4 = 6, and c3 = c5 = 15 and
k3 = k5 = 6. Thus, the closed-loop error dynamics has real eigenvalues.

3) Bidirectional control law with gains c = 6 and k = 16. For this control form, the gains can be identical, and
these gains lead to four real and six imaginary eigenvalues for Acl.

4) Bidirectional control law with gains c = 16 and k = 6. Here, Acl has ten real eigenvalues.
Figures 3–6 show the formation convergence for the four sets of results. Note that the vehicles are traveling from

left to right in the figure, and each vehicle has initial position and velocity errors. The first vehicle in the formation
tracks a reference trajectory with a constant velocity in the x direction where ẋr = 1 distance unit/time unit (DU/TU).
In each figure, the top, left subplot shows the formation convergence without delay in the feedback control law; the

Fig. 3 Formation results for the leader–follower communication structure (c = 6, k = 16).
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Fig. 4 Formation results for the leader-follower communication structure (c = 16, k = 6).

Fig. 5 Formation results for the bidirectional communication structure (c = 6, k = 16).
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Fig. 6 Formation results for the bidirectional communication structure (c = 16, k = 6).

Fig. 7 Error convergence of the third vehicle for the leader-follower communication structure (c = 6, k = 16).

top, right subplot shows the formation convergence for the maximum allowable delay in the system determined from
Eq. (17); in the bottom, left subplot, the delay has been reduced to 90% of the maximum delay; and in the bottom,
right subplot, the delay has been decreased to half of the maximum allowable delay. Formation geometry is denoted
at various times during the simulation to show the evolution of formation convergence. Figures 7–10 show the error
convergence of V3 in the formation in both the x and y directions for the same delays as in the previous figures.

331



WEITZ AND HURTADO

Fig. 8 Error convergence of the third vehicle for the leader-follower communication structure (c = 16, k = 6).

Fig. 9 Error convergence of the third vehicle for the bidirectional communication structure (c = 6, k = 16).

Results are summarized in Table 1, where the formation convergence time is defined as the time when all five
vehicles are within 10% of their desired separation in both the x and y directions.

Several conclusions can be drawn from both the figures and the table. The formation convergence for the systems
simulated with the maximum allowable delay exhibits highly oscillatory behavior, as expected, near the stability
bounds. In the results for the leader–follower control laws, the convergence time increases significantly when the
delay is near the optimal bound. Decreasing the maximum delay by half greatly improves the convergence results as
is evident in both the formation figures and the third-vehicle figures. The leader–follower communication structure is
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Fig. 10 Error convergence of the third vehicle for the bidirectional communication structure (c = 16, k = 6).

Table 1 Control-law convergence and error results

Communication Time-delay Convergence
structure Gains (TU) time (TU)

Leader–follower c = 6, k = 16 0 0.8620
0.1687 (τmax) 39.9728
0.1518 (0.9τmax) 11.4032
0.0843 (0.5τmax) 1.5646

Leader–follower c = 16, k = 6 0 7.0300
0.0943 (τmax) 73.2709
0.0849 (0.9τmax) 9.2813
0.0471 (0.5τmax) 6.4791

Bidirectional c = 6, k = 16 0 1.5800
0.0586 (τmax) 7.1912
0.0527 (0.9τmax) 1.6211
0.0293 (0.5τmax) 1.6077

Bidirectional c = 16, k = 6 0 5.8400
0.0238 (τmax) 5.6520
0.0214 (0.9τmax) 5.6327
0.0119 (0.5τmax) 5.7254

less robust in terms of the large oscillations that were induced in the outside vehicles (V3 and V5), as the inputs to these
vehicles contain the errors of the preceding vehicles. The oscillations become more localized for the bidirectional
communication structure, and the effect of this localization is evident in the convergence times in the table. In both
communication structures, some filtering techniques may lessen the effects of the delay. In the bidirectional structure
the control gains were chosen to be equal, which does not require the control designer to be concerned with the
diagonalizablity of the closed-loop equations as is the case in the leader–follower form. Therefore, the bidirectional
form has two advantages over the leader–follower form: robustness to time-delay effects and diagonalizability for
equal gains.
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E. Discussion
The theory presented here can be summarized as an approach to determine delay-dependent stability bounds

for a coupled, closed-loop system. This approach does not support the determination of delay-independent bounds.
Because the kinematics are assumed delayed to diagonalize the system, the coefficients ai are equal to zero in Eq. (14),
which places the scalar DDE coefficients in the delay-dependent stability region of Fig. 1.

Additionally, the results can be compared to previously referenced work by Chopra and Spong, where delay-
independent stability was demonstrated for passive systems using a Lyapunov analysis [23,24]. That result was
demonstrated using a circular communication structure where the feedback coupling had equal gains and time delays
impacted transmitted states only. Whereas these results could also apply to the passive dynamics of the vehicle model
in Eq. (18), it remains to be seen whether a Lyapunov function can be determined for the specific formation control
laws presented here, which have unequal control gains, delays on both transmitted and measured states, and are
developed for a noncircular communication structure.

The approach to quantify stability bounds has reduced the computational analysis to essentially solving an eigen-
value value problem in order to diagonalize, or decouple, the closed-loop equations of motion. This approach
is contrasted with the analytical rigor of finding a Lyapunov function for each control law or the computational
challenges in implementing some of the previously discussed work in Sec. II.

VI. Conclusions
In this paper, a straightforward method is presented for determining the maximum allowable time delay in a

linear, n-dimensional system using some well-known results from the literature on DDEs. Using a modal-coordinate
transformation, the system of linear, first-order equations of motion can be decoupled into scalar, first-order DDEs.
This theory is applied to a multivehicle, decentralized formation-control problem, from which two control schemes
are developed based upon the desired communication structure of the formation. Simulation results demonstrate
the stability and performance of the formation convergence when delays are within the calculated stability bounds.
Additionally, the effects of communication structure become evident in the formation convergence when delays are
introduced. The approach presented in this paper reduces the problem of determining delay-dependent stability bounds
to an eigenvalue problem, which eliminates the rigor of other approaches that require finding a problem-specific
Lyapunov function, solving LMIs, or solving computationally expensive root-finding problems.

Future work includes the inverse problem where control laws are designed to accommodate expected time delays
in the state feedback. Desired or expected system delays lead to closed-loop eigenvalues; however, the closed-loop
eigenvectors must also be chosen appropriately to arrive at feedback gains that meet the communication-structure
constraints.
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